

When you buy an ebook through oreilly.com, you get lifetime access to the book, and
whenever possible we provide it to you in four, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, and Android .apk ebook—that you can use on the devices of
your choice. Our ebook files are fully searchable and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at http://oreilly.com/ebooks/

You can also purchase O’Reilly ebooks through iTunes,
the Android Marketplace, and Amazon.com.

O’Reilly Ebooks—Your bookshelf on your devices!

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://oreilly.com

Getting Started with the
Internet of Things
by Cuno Pfister

Copyright © 2011 Cuno Pfister. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.
1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most
titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Print History: May 2011: First Edition.

Editor: Brian Jepson
Production Editor: Jasmine Perez
Copyeditor: Marlowe Shaeffer
Proofreader: Emily Quill
Compositor: Nancy Wolfe Kotary
Indexer: Angela Howard
Illustrations: Marc de Vinck
Cover Designer: Marc de Vinck

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
The Make: Projects series designations and related trade dress
are trademarks of O’Reilly Media, Inc. The trademarks of third
parties used in this work are the property of their respective
owners.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility
for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-1-4493-9357-1

[LSI]

Preface

One of the most fascinating trends today is the emergence of low-cost
microcontrollers that are sufficiently powerful to connect to the Internet.
They are the key to the Internet of Things, where all kinds of devices
become the Internet’s interface to the physical world.

Traditionally, programming such tiny embedded devices required
completely different platforms and tools than those most programmers
were used to. Fortunately, some microcontrollers are now capable of
supporting modern software platforms like .NET, or at least useful
subsets of .NET. This allows you to use the same programming language
(C#) and the same development environment (Visual Studio) when
creating programs for small embedded devices, smartphones, PCs,
enterprise servers, and even cloud services.

So what should you know in order to get started? This book gives one
possible answer to this question. It is a Getting Started book, so it is
neither an extensive collection of recipes (or design patterns for that
matter), nor a reference manual, nor a textbook that compares
different approaches, use cases, etc. Instead, its approach is “less is
more,” helping you to start writing Internet of Things applications with
minimal hassle.

The Platforms
The .NET Micro Framework (NETMF) provides Internet connectivity, is
simple and open source (Apache license), has hardware available from
several vendors, and benefits from the huge .NET ecosystem and avail-
able know-how. Also, you can choose between Visual Studio (including
the free Express Edition) on Windows, and the open source Mono tool-
chain on Linux and Mac OS X.

There is an active community for NETMF at http://www.netmf.com/
Home.aspx. The project itself is hosted at http://netmf.codeplex.com/.

http://www.netmf.com/Home.aspx
http://www.netmf.com/Home.aspx
http://netmf.codeplex.com/

YL����3UHIDFH

Netduino Plus (http://www.netduino.com/netduinoplus) is an inexpensive
NETMF board from Secret Labs (http://www.secretlabs.com). This board
makes Ethernet networking available with a price tag of less than $60.
It has the following characteristics:

 » A 48 MHz Atmel SAM7 microcontroller with 128 KB RAM and 512 KB
Flash memory

 » USB, Ethernet, and 20 digital I/O pins (six of which can be configured
optionally for analog input)

 » Micro SD card support

 » Onboard LED and pushbutton

 » Form factor of the Arduino (http://www.arduino.cc/); many Arduino
shields (add-on boards) can be used

 » .NET Micro Framework preprogrammed into Flash memory

 » All software and hardware is open source

There is an active community for the Netduino Plus (and NETMF) at
http://forums.netduino.com/. All the examples in this book use the
Netduino Plus.

How This Book Is Organized
The book consists of three parts:

 » Part I, Introduction

The first part tells you how to set up the development environment and
write and run a “Hello World” program. It shows how to write to output
ports (for triggering so-called actuators such as LED lights or motors)
and how to read from input ports (for sensors). It then introduces the
most essential concepts of the Internet of Things: HTTP and the division
of labor between clients and servers. In the Internet of Things, devices
are programmed as clients if you want them to push sensor data to
some service; they are programmed as servers if you want to enable
remote control of the device over the Web.

http://www.netduino.com/netduinoplus
http://www.secretlabs.com
http://www.arduino.cc/
http://forums.netduino.com/

3UHIDFH����YLL����

 » Part II, Device as HTTP Client

The second part focuses on examples that send HTTP requests to
some services—e.g., to push new sensor measurements to the Pachube
service (http://www.pachube.com) for storage and presentation.

 » Part III, Device as HTTP Server

The third part focuses on examples that handle incoming HTTP
requests. Such a request may return a fresh measurement from
a sensor, or may trigger an actuator. A suitable server-side library
is provided in order to make it easier than ever to program a small
device as a server.

 » Appendix A, Test Server

This contains a simple test server that comes in handy for testing and
debugging client programs.

 » Appendix B, .NET Classes Used in the Examples

This shows the .NET classes that are needed to implement all examples,
and the namespaces and assemblies that contain them.

 » Appendix C, Gsiot.Server Library

This summarizes the interface of the helper library *VLRW�6HUYHU that
we use in Part III.

Who This Book Is For
This book is intended for anyone with at least basic programming skills
in an object-oriented language, as well as an interest in sensors, micro-
controllers, and web technologies. The book’s target audience consists
of the following groups:

 » Artists and designers

You need a prototyping platform that supports Internet connectivity,
either to create applications made up of multiple communicating devices,
or to integrate the World Wide Web into a project in some way. You want to

http://www.pachube.com

YLLL����3UHIDFH

turn your ideas into reality quickly, and you value tools that help you get
the job done. Perhaps you have experience with the popular 8-bit Arduino
platform (http://www.arduino.cc/), and might even be able to reuse some
of your add-on hardware (such as shields and breakout boards) originally
designed for Arduino.

 » Students and hobbyists

You want your programs to interact with the physical world, using
mainstream tools. You are interested in development boards, such as the
Netduino Plus, that do not cost an arm and a leg.

 » Software developers or their managers

You need to integrate embedded devices with web services and want
to learn the basics quickly. You want to build up an intuition that ranges
from overall system architecture to real code. Depending on your prior
platform investments, you may be able to use the examples in this
book as a starting point for feasibility studies, prototyping, or product
development. If you already know .NET, C#, and Visual Studio, you can
use the same programming language and tools that you are already
familiar with, including the Visual Studio debugger.

To remain flexible, you want to choose between different boards from
different vendors, allowing you to move from inexpensive prototypes
to final products without having to change the software platform. To
further increase vendor independence, you probably want to use open
source platforms, both for hardware and software. To minimize costs,
you are interested in a platform that does not require the payment of
target royalties, i.e., per-device license costs.

If your background is in the programming of PCs or even more powerful
computers, a fair warning: embedded programming for low-cost devices
means working with very limited resources. This is in shocking contrast
with the World Wide Web, where technologies usually seem to be created
with utmost inefficiency as a goal. Embedded programming requires
more careful consideration of how resources are used than what is
needed for PCs or servers. Embedded platforms only provide small sub-
sets of the functionality of their larger cousins, which may require some
inventiveness and work where a desired feature is not available directly.
This can be painful if you feel at home with “the more, the better,” but it
will be fun and rewarding if you see the allure of “small is beautiful.”

http://www.arduino.cc/

3UHIDFH����L[����

What You Need to Get Started
This book focuses on the interaction between embedded devices and other
computers on the Internet, using standard web protocols. Its examples
mostly use basic sensors and actuators, so it is unnecessary to buy much
additional hardware besides an inexpensive computer board. Here is a list
of things you need to run all the examples in this book:

 » A Netduino Plus board (http://www.netduino.com/netduinoplus)

 » A micro USB cable (normal male USB-A plug on PC side, male micro
USB-B plug on Netduino Plus side), to be used during development and
for supplying power

 » An Ethernet router with one Ethernet port available for your Netduino
Plus

 » An Internet connection to your Ethernet router

 » An Ethernet cable for the communication between Netduino Plus and
the Ethernet router

 » A potentiometer with a resistance of about 100 kilohm and through-
hole connectors

 » A Windows XP/Vista/7 PC, 32 bit or 64 bit, for the free Visual Studio
Express 2010 development environment (alternatively, you may use
Windows in a virtual machine on Mac OS X or Linux, or you may use the
Mono toolchain on Linux or Mac OS X)

NOTE:! There are several sources where you can buy the hardware
components mentioned above, assuming you already have a router
with an Internet connection:

 » Maker SHED (http://www.makershed.com/)

 » Netduino Plus, part number MKND02
 » Potentiometer, part number JM2118791

 » SparkFun (http://www.sparkfun.com/)

 » Netduino Plus, part number DEV-10186

http://www.netduino.com/netduinoplus
http://www.makershed.com/
http://www.sparkfun.com/

[����3UHIDFH

 » Micro USB cable, part number CAB-10215 (included with Netduinos
for a limited time)

 » Ethernet cable, part number CAB-08916
 » Potentiometer, part number COM-09806

For more sources in the U.S. and in other world regions, please see
http://www.netduino.com/buy/?pn=netduinoplus.

It is also possible to add further sensors and actuators.

Conventions Used in This Book
The following typographical conventions are used in this book:

 » Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

 » &RQVWDQW�ZLGWK

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, data types,
statements, and keywords.

 » &RQVWDQW�ZLGWK�EROG

Shows commands or other text that should be typed literally by the user.

 » &RQVWDQW�ZLGWK�LWDOLF

Shows text that should be replaced with user-supplied values or by
values determined by context.

NOTE:! This style signifies a tip, suggestion, or general note.

http://www.netduino.com/buy/?pn=netduinoplus

3UHIDFH����[L����

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example:
“Getting Started with the Internet of Things, by Cuno Pfister.
Copyright 2011 Cuno Pfister, 978-1-4493-9357-1.”

If you feel your use of code examples falls outside fair use or the permis-
sion given here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://oreilly.com/catalog/0636920013037

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
and the O’Reilly Network, see our website at:

http://oreilly.com

mailto:permissions@oreilly.com
http://oreilly.com/catalog/0636920013037
http://oreilly.com/

[LL����3UHIDFH

Safari® Books Online
Safari Books Online is an on-demand digital library
that lets you easily search over 7,500 technology
and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access
new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy
and paste code samples, organize your favorites, download chapters,
bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
My thanks go to Brian Jepson, Mike Loukides, and Jon Udell, who made it
possible to develop this mere idea into an O’Reilly book. It was courageous
of them to take on a book that uses a little-known software platform, bets
on a hardware platform not in existence at that time, and addresses a field
that is only now emerging. Brian not only edited and contributed to the
text, he also tried out all examples and worked hard on making it possible
to use Mac OS X and Linux as development platforms.

I would like to thank my colleagues at Oberon microsystems for their
support during the gestation of this book. Marc Frei and Thomas Amberg
particularly deserve credit for helping me with many discussions, feed-
back, and useful code snippets. Their experience was invaluable, and
I greatly enjoyed learning from them. Marc’s deep understanding of REST
architecture principles and its implementation for small devices was
crucial to me, as was Thomas’s insistence on “keeping it simple” and his
enthusiasm for maker communities like those of Arduino and Netduino.
Both showed amazing patience whenever I misused them as sounding
boards and guinea pigs. I could always rely on Beat Heeb for hardware
and firmware questions, thanks to his incredible engineering know-how,
including his experience porting the .NET Micro Framework to several
different processor architectures.

http://my.safaribooksonline.com

3UHIDFH����[LLL����

Corey Kosak’s feedback made me change the book’s structure massively
when most of it was already out as a Rough Cut. This was painful, but the
book’s quality benefited greatly as a result.

I have profited from additional feedback by the following people:
Chris Walker, Ben Pirt, Clemens Szyperski, Colin Miller, and Szymon
Kobalczyk. I am profoundly grateful because their suggestions
definitely improved the book.

The book wouldn’t have been possible without the Netduino Plus, and Chris
Walker’s help in the early days when there were only a handful of prototype
boards. Whenever I had a problem, he responded quickly, competently, and
constructively. I have no idea when he finds time to sleep.

Last but not least, many thanks go to the team at Microsoft—in particular
Lorenzo Tessiore and Colin Miller—for creating the .NET Micro Framework in
the first place. Their sheer tenacity to carry on over the years is admirable,
especially that they succeeded in turning the platform into a true open
source product with no strings attached.

������

6/Hello Pachube

In this chapter, I will show a basic HTTP client, +HOOR3DFKXEH, that pushes
samples to Pachube, as shown in Figure 6-1.

Figure 6-1. Architecture of HelloPachube

+HOOR3DFKXEH runs on the Netduino Plus and sends measurements to the
Pachube web service by issuing HTTP PUT requests. The user, through
his web browser, sends HTTP GET requests to Pachube to retrieve feed
entries. The data flow originates in the device, goes up to Pachube, and
continues from there to the user.

Setting Up the Network
Configuration
Before you can run such a client, you need to make sure that your
Netduino Plus board has access to the Internet—i.e., it can send request
messages to any server visible on the Internet. I assume that your

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

Netduino Plus is connected to the Internet via a router and a cable or DSL
modem (Figure 6-2).1 This means that you have a local area network to
which both the board and your development PC are connected. During
development and debugging, the PC and Netduino Plus are directly
connected via a USB cable as well.

Figure 6-2. Connection of board to the Internet

Internet Addresses
A router typically implements the Dynamic Host Configuration
Protocol (DHCP). This protocol allows your development PC, your
Netduino Plus, and other devices to automatically obtain Internet
addresses (e.g., ����������� for the PC, and ����������� for the

1 Sometimes a cable modem already includes a router in the same box.

��+HOOR�3DFKXEH����������

Netduino Plus). The Internet protocols rely on Internet addresses for
routing messages between clients and servers.

If your Netduino Plus obtains its Internet address automatically via DHCP,
it typically gets an Internet address in one of these reserved address
ranges:

��������[[[�[[[

�������[[[�[[[

���[[[�[[[�[[[

where [[[lies between � and ���. Public Internet servers never use
these reserved addresses. They are unique only within a given local area
network, not worldwide like other Internet addresses. For example, there
are thousands of computers with the private address �������������. This
is not a problem as long as your device is only a client, but it can be a
problem for devices used as servers, as we will see in Part III.

To implement such a multiplexing of Internet addresses, a router has
to perform network address translation (NAT). This hides the private
Internet addresses from the Internet by making it appear as though all
Internet traffic from the board or from the development PC originated
from the router. This provides a certain degree of security because a
program on the Internet cannot directly address—and therefore try to
connect to—a device hidden behind the router. In addition, it reduces
the number of Internet addresses that must be visible globally, which is
important because the common four-byte IPv4 Internet addresses will
basically be used up by the time this book comes out.

A client program can directly use an Internet address to connect to a
server on the Internet—e.g., the address ������������� to connect to a
Pachube server. Since such Internet addresses are not very convenient,
you can alternatively use a domain name for addressing a host. In the
above example, the domain name is SDFKXEH�FRP. Domain names are
registered with the Internet’s domain name system (DNS). The domain
name system allows for looking up domain names, much in the same way
as a phone book is used for looking up names (except instead of finding
phone numbers, the domain name system returns Internet addresses). A
domain name lookup is simply another request over the Internet, e.g., to a
DNS server of your Internet service provider.

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

The MFDeploy Tool
Before you can use your Netduino Plus on the network, you need to check
its network settings and configure it if necessary. In particular, you should
make sure that DHCP is switched on and that the correct MAC address of
the board is set. The MAC address is a unique six-byte identifier, typically
written like this:2

�F��D��D���������

To check or modify the network configuration, use the tool MFDeploy,
which is provided as part of the Microsoft .NET Micro Framework SDK.
To find it, click Start¬All Programs¬Microsoft .Net Micro Framework
4.1¬Tools and run MFDeploy.exe. Another way to find it is to look in the
directory:

&�?3URJUDP�)LOHV?0LFURVRIW��1(7�0LFUR�)UDPHZRUN?Y���?7RROV?

0)'HSOR\�H[H

(On a 64-bit operating system, the first folder will be Program Files (x86).)

Now, perform the following steps:

1. Start MFDeploy.exe. The dialog box .NET Micro Framework Deployment
Tool opens.

2. In the leftmost Device list box, change the selection from Serial to USB.

3. Plug your Netduino Plus USB cable into your development PC. In the
rightmost Device list box, the name NetduinoPlus_NetduinoPlus should
appear.

4. Click on the Ping button to make sure the device responds. As result, the
large text box should now show “Pinging… TinyCLR”.

5. In the Target menu, select Configuration¬Network. The Network
Configuration dialog box opens.

6. If it isn't checked already, click on the DHCP checkbox to enable auto-
matic configuration of most network parameters.

2 You will find the MAC address of your Netduino Plus on the sticker at the bottom of the board.

��+HOOR�3DFKXEH����������

7. If it isn’t configured yet, enter your board’s MAC address. This is the only
parameter you need to provide. You can leave the DNS Primary Address
and the DNS Secondary Address at �������, as shown in Figure 6-3.

8. Click the Update button.

9. Reboot your Netduino Plus. It should now automatically obtain the miss-
ing network parameters from your router. To make sure that the Netduino
Plus reboots, I usually perform a complete power-off/power-on cycle by
briefly unplugging and reinserting the USB cable from the PC. After such
a power cycle, you have five seconds to deploy a new program; otherwise,
the most recently deployed program is restarted automatically.

Figure 6-3. Network Configuration in MFDeploy

To check whether the configuration works correctly, run the +HOOR�3DFKXEH
client program described next.

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

HelloPachube
Now that your Netduino Plus is ready to access the Internet, we can look at
a first version of a Pachube client. Its source code is given in Example 6-1.

Example 6-1. HelloPachube
XVLQJ�6\VWHP�

XVLQJ�6\VWHP�7KUHDGLQJ�

XVLQJ�*VLRW�3DFKXEH&OLHQW�

XVLQJ�0LFURVRIW�6327�

XVLQJ�0LFURVRIW�6327�+DUGZDUH�

XVLQJ�6HFUHW/DEV�1(70)�+DUGZDUH�

XVLQJ�6HFUHW/DEV�1(70)�+DUGZDUH�1HWGXLQR3OXV�

SXEOLF�FODVV�+HOOR3DFKXEH

^

����SXEOLF�VWDWLF�YRLG�0DLQ��

����^

��������FRQVW�VWULQJ�DSL.H\� ��\RXU�3DFKXEH�$3,�NH\��

��������FRQVW�VWULQJ�IHHG,G� ��\RXU�3DFKXEH�IHHG�LG��

��������FRQVW�LQW�VDPSOLQJ3HULRG� ����������������VHFRQGV

��������FRQVW�GRXEOH�PD[9ROWDJH� �����

��������FRQVW�LQW�PD[$GF9DOXH� ������

��������YDU�YROWDJH3RUW� �QHZ�$QDORJ,QSXW�3LQV�*3,2B3,1B$���

��������YDU�ORZ3RUW� �QHZ�2XWSXW3RUW�3LQV�*3,2B3,1B$���IDOVH��

��������YDU�KLJK3RUW� �QHZ�2XWSXW3RUW�3LQV�*3,2B3,1B$���WUXH��

��������ZKLOH��WUXH�

��������^

������������:DLW8QWLO1H[W3HULRG�VDPSOLQJ3HULRG��

������������LQW�UDZ9DOXH� �YROWDJH3RUW�5HDG���

������������GRXEOH�YDOXH� ��UDZ9DOXH�
�PD[9ROWDJH����PD[$GF9DOXH�

������������VWULQJ�VDPSOH� ��YROWDJH�����YDOXH�7R6WULQJ��I���

������������'HEXJ�3ULQW��QHZ�PHVVDJH������VDPSOH��

������������3DFKXEH&OLHQW�6HQG�DSL.H\��IHHG,G��VDPSOH��

��������`

����`

��+HOOR�3DFKXEH����������

����VWDWLF�YRLG�:DLW8QWLO1H[W3HULRG�LQW�SHULRG�

����^

��������ORQJ�QRZ� �'DWH7LPH�1RZ�7LFNV���7LPH6SDQ�7LFNV3HU0LOOLVHFRQG�

��������YDU�RIIVHW� ��LQW��QRZ���SHULRG��

��������LQW�GHOD\� �SHULRG���RIIVHW�

��������'HEXJ�3ULQW��VOHHS�IRU�����GHOD\�����PV?U?Q���

��������7KUHDG�6OHHS�GHOD\��

����`

`

To run the program, follow these steps:

1. Make sure that your Netduino Plus is connected to your Ethernet
router and that it is correctly configured for network access (see the
previous section).

2. If you haven’t done so already, download the Visual Studio project *VLRW�
3DFKXEH&OLHQW from http://www.gsiot.info/download/, unzip it, and put
it into the Visual Studio 2010\Projects\ directory.

3. Create a new Visual Studio project (using the Netduino Plus template)
and name it HelloPachube. Replace the contents of Program.cs with the
code from Example 6-1.

4. You must replace the strings for DSL.H\ and IHHG,G so they match your
Pachube API key and feed ID.

5. Right-click on References in the Solution Explorer. Select Add¬
New Reference. In the Add Reference dialog box, click on the Browse tab.
In the directory hierarchy, go up two steps to directory Project. In the
directory Gsiot.PachubeClient, open the subdirectory Gsiot.Pachube-
Client (yes, the same name again). In this directory, open the bin sub-
directory. From there, open the Release subdirectory. In this subdirectory,
select the Gsiot.PachubeClient.dll file. Click the OK button. You have now
added the assembly Projects\Gsiot.PachubeClient\Gsiot.PachubeClient\
bin\Release\Gsiot.PachubeClient.dll.

Now you’re ready to test it: build the project and deploy it to your Netduino
Plus, as described in the section “Deploying to the Device” in Chapter 1.

http://www.gsiot.info/download/

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

NOTE:! In the simplest case, one C# namespace is translated into exactly
one .NET assembly (stored in a DLL), which is the binary form of .NET code.
For the .NET Micro Framework, a built-in postprocessor tool translates .dll
assembly files into .pe files, which are a more compact representation of
the same code. These are the files that get deployed to the Netduino Plus.

Viewing the Results
After +HOOR3DFKXEH has started, you’ll see something like the following in
Visual Studio’s Output window:

VOHHS�IRU�������PV

7KH�WKUHDG�¶�1R�1DPH!·���[���KDV�H[LWHG�ZLWK�FRGH�����[���

QHZ�PHVVDJH��YROWDJH�����

WLPH���������������������

PHPRU\�DYDLODEOH�������

6WDWXV�FRGH�����

VOHHS�IRU�������PV

7KH�WKUHDG�¶�1R�1DPH!·���[���KDV�H[LWHG�ZLWK�FRGH�����[���

QHZ�PHVVDJH��YROWDJH�����

WLPH���������������������

PHPRU\�DYDLODEOH�������

6WDWXV�FRGH�����

VOHHS�IRU�������PV

7KH�WKUHDG�¶�1R�1DPH!·���[���KDV�H[LWHG�ZLWK�FRGH�����[���

QHZ�PHVVDJH��YROWDJH�����

WLPH���������������������

PHPRU\�DYDLODEOH�������

6WDWXV�FRGH�����

VOHHS�IRU�������PV

7KH�WKUHDG�¶�1R�1DPH!·���[���KDV�H[LWHG�ZLWK�FRGH�����[���«

Because a Netduino Plus has no battery-backed real-time clock, its clock
is started anew whenever you reboot the device. Upon rebooting, the
initial time is the start of January 1, 2009.

Twenty seconds pass between two consecutive samples; roughly 19 of
them are spent sleeping. You can see that the samples were successfully

��+HOOR�3DFKXEH����������

sent to Pachube because the returned status code is 200, which is the
OK status code of HTTP.

To verify that the samples have indeed arrived at Pachube, type the fol-
lowing URI into your web browser, replacing \RXU�3DFKXEH�IHHG�LG with
your feed ID:

KWWS���ZZZ�SDFKXEH�FRP�IHHGV�\RXU�3DFKXEH�IHHG�LG

You should now see that the status of your feed is marked as FXUUHQWO\�
OLYH. This means that the most recent sample is not older than 15 minutes;
otherwise, the status FXUUHQWO\� IUR]HQ would be shown.

NOTE:! If you don’t see this output, make sure that the Netduino Plus
is connected via Ethernet cable to a router, and via USB cable to your
development PC. Use MFDeploy to check whether DHCP is enabled and
the MAC address is set. Check whether the example correctly builds and
whether its properties are set up to deploy to the device via USB.

To see a graphical representation of the most recent samples, view the
feed’s web page, look at the graph there, and click the label “last hour”.

How It Works
The initialization of the HelloPachube 0DLQ method starts with two
Pachube-related constants: your Pachube API key (DSL.H\) and the ID of
the feed to which you want to publish your samples (IHHG,G). After that,
there are a few other constants and variables that are set:

 » Specifying how often to send updates

First comes the timing-related constant VDPSOLQJ3HULRG. The goal for
the example is to sample and publish a new observation at regular inter-
vals, namely once every VDPSOLQJ3HULRG, which is given in milliseconds
(20,000 milliseconds is 20 seconds).

To publish a sample, send a web request and wait for its response. The
time for such a complete round-trip consists of the time it takes for the
request to travel to the server, for the server to create a response, and
for the response to travel back to the client.

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

NOTE:! The speed of the round-trip depends mainly on five factors: the
distance between client and server, the current traffic on the Internet,
the performance of the server, the current load of the server, and the
amount of data transferred. Typical numbers range from about 50 milli-
seconds for round-trips to servers close to the client, to well over 1,000
milliseconds for round-trips across continents or to overtaxed servers
(even for short messages). Since they depend on the Internet’s current
traffic, the times for subsequent round-trips from the same client to the
same server can vary.

If you use a slower connection than Ethernet, this can also affect round-
trip times. For example, if you dropped a Netduino out in the woods with a
cheap 2G GSM module, it would probably spend most of the 20 seconds
doing the round-trip.

 » Setting up the voltage reader

The YROWDJH3RUW object and related variables and constants are set up,
as you saw in Chapter 3. They are used for reading voltage values from
an attached potentiometer.

After the variables and constants are initialized, a ZKLOH loop controls
what happens from then on. This main loop will run until you turn off the
Netduino Plus.

The main loop does basically three things:

 » Sleeps until the next sample is due, using the helper method :DLW8QWLO�
1H[W3HULRG, which I will discuss in the next section.

 » Creates the sample by reading the voltage port.

 » Sends the value to Pachube using 3DFKXEH&OLHQW�6HQG. This method
takes the Pachube API key, your feed ID, plus the sample data, and
sends them to Pachube in a suitable PUT request message. It then
receives the response message and prints the response’s status code
to the debug console.

��+HOOR�3DFKXEH����������

To use the *VLRW�3DFKXEH&OLHQW for sending requests to Pachube in a
“fire and forget” manner, you don’t need to know more than this. However,
if you want to know how the library actually works, how you could modify
it, or how you could create a similar library, you need to understand more
about how to send HTTP request messages and receive HTTP response
messages. This is the topic of Chapter 7.

The WaitUntilNextPeriod Method
In this example, samples should be taken at highly regular intervals. To do
this, you can use the :DLW8QWLO1H[W3HULRG helper method, which you can
reuse in similar programs later on. The following text explains the method
in some detail. You can skip the explanation if you just want to go ahead
and use the method.

After each sample is sent, the program needs to sleep until the next
period starts. How can this delay be calculated with precision when we
don’t know in advance exactly how long it will take to send a request and
receive its response?

This example starts a new period every 20 seconds. (Free Pachube
accounts don’t allow updates more often than every 12 seconds.)
Assume the following:

 » You last took a reading at 09:32:40.

 » After the time it took you to send a message and receive the response,
it is now 09:32:46.

 » You want to send the next message (and start a new period) at
09:33:00.

The delay then can be calculated as the difference between the length of
the period (20 seconds) and the offset, where the offset indicates how
far you are into the current period. The offset is calculated as the current
time (i.e., now) modulo the period. In the example shown in Figure 6-4,
the offset is six seconds; therefore, the delay is 14 seconds.

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

Figure 6-4. Calculating the delay until the start of the next period

The property 'DWH7LPH�1RZ�7LFNV gives the current time3 in ticks, which in
.NET is a time at a resolution of 100 nanoseconds. Dividing ticks by 10,000
(7LPH6SDQ�7LFNV3HU0LOOLVHFRQG) yields the same time in milliseconds,
albeit less precisely. This requires a 64-bit ORQJ integer type. To calculate
the modulus, use the � operator of C#. Because the result of a modulus
operation is always smaller than the operand, in this case SHULRG, it can be
safely cast to a 32-bit integer using the �LQW� cast.

NOTE:! The modulo operator, �, computes the remainder of a division.
For example, the division of 7 by 2 yields 3. Computing “backwards” by
multiplying the result 3 by the divisor 2, we get 6. The difference between
6 and the dividend (7) is the remainder—in this case, 1.

:DLW8QWLO1H[W3HULRG ensures that sampling starts at highly regular
intervals. It is robust even in cases where an iteration takes longer than
its period allows for. This might occur if something unexpected happens,
such as an exception that takes an inordinately long time to be sent to the
debugger. This may result in one or several periods being skipped—but
the next one starts at a correct period boundary anyway.

3 On a Netduino, this is the time since the device has booted. It has no battery-backed real-time clock that
keeps track of time when it isn’t powered.

��+HOOR�3DFKXEH����������

Casting Values
C# provides several integer types, which differ in the number ranges
that they encompass and in the bits used for storing them. The larger
the number range, the more bits are needed. The LQW type supports
numbers in the range from –2,147,483,648 to 2,147,483,647 and
requires 32 bits (four bytes). The ORQJ type supports numbers in the
range from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
and requires 64 bits (eight bytes). Any LQW variable L fits in a ORQJ
variable O, so the assignment O� �L always works. However, the other
direction does not always work: most ORQJ numbers do not fit in an LQW
variable. Therefore, C# requires using a type cast, L �LQW�O, to make it
obvious that this danger exists here. If O is too large when it is assigned
to L, L will be assigned garbage. So when the compiler requires such a
type cast, it is a good idea to think about whether you can really be sure
that the current value of O fits into L.

What Netduino Said to Pachube
To see that there is no magic involved in HTTP requests, let’s look at the
data actually transferred to the Pachube server during a request:

387��Y��IHHGV�ILG�FVY�+773����?U?Q

+RVW��DSL�SDFKXEH�FRP?U?Q

;�3DFKXEH$SL.H\��\RXU�3DFKXEH�$3,�NH\�LV�KHUH?U?Q

&RQWHQW�7\SH��WH[W�FVY?U?Q

&RQWHQW�/HQJWK����?U?Q

?U?Q

YROWDJH�����

This is the text sent over the Internet to Pachube! At least that’s what is
sent if the measured voltage is 1.52.

An HTTP request consists of one request line, followed by a number
of header lines, followed by an empty line, and optionally followed by a
message body (i.e., the message’s content).

The request line starts with the HTTP method: PUT, GET, etc. After a
blank, the request URI indicates the resource to be accessed. After
another blank, the HTTP version is given, which is usually version 1.1
these days. The request line is terminated by a carriage-return byte
followed by a newline byte.

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

NOTE:! ?U?Q stands for the two bytes &5 and /) (carriage return and line
feed, respectively). If you were to look at the actual text of the request,
they would not be visible.

HTTP defines a number of headers, both for requests and responses. For
requests, the +RVW header is particularly important because it defines to
which computer the request is sent—in this case, to DSL�SDFKXEH�FRP. If you
take this host and the request URI in the request line (here, it’s �Y��IHHGV�
ÀG�FVY), you can construct the absolute URI of the resource accessed by this
PUT request:

KWWS���DSL�SDFKXEH�FRP�Y��IHHGV�ILG�FVY

Unlike the URIs that we have seen in Chapter 5, which have been URIs
for consumers of Pachube feeds, this is a URI for producers that send
measurements to Pachube.

Different applications may use very different sets of headers. For our
purposes, the most important headers are +RVW (for requests only) and
&RQWHQW�/HQJWK and &RQWHQW�7\SH (for both requests and responses).
Applications may define their own headers, like the ;�3DFKXEH$SL.H\
above. The order of HTTP headers is not significant, as every possible
ordering is correct.

The message body consists of exactly the 12 bytes YROWDJH����� here,
has no terminating characters, and is separated from the last header by
an empty line.

NOTE:! To find out what exactly your client is sending, you may use a
simple test server (such a server is given in Appendix A). To make +HOOR�
3DFKXEH send its requests to a test server running on your PC, change the
constant EDVH8UL in *VLRW�3DFKXEH&OLHQW so that it points to your server.

http://api.pachube.com/v2/feeds/fid.csv

��+HOOR�3DFKXEH����������

What Pachube Said to Netduino
An HTTP response from Pachube may look like this:

+773���������2.?U?Q

6HUYHU��QJLQ[�������?U?Q

'DWH��0RQ�����)HE���������������*07?U?Q

&RQWHQW�7\SH��WH[W�SODLQ��FKDUVHW XWI��?U?Q

&RQQHFWLRQ��NHHS�DOLYH?U?Q

6HW�&RRNLH��BSDFKXEHBDSSBVHVVLRQ %$K�%MR3F�9]F�OYEO�«�?U?Q

&DFKH�&RQWURO��PD[�DJH �?U?Q

&RQWHQW�/HQJWK���?U?Q

$JH���?U?Q

9DU\��$FFHSW�(QFRGLQJ?U?Q

In this response, the first line, known as the status line, is the most
important. HTTP defines a number of status codes; status code 200
means that the request was handled successfully. (The most important
status codes are given in Chapter 10.) The status code is located
between the HTTP version and a plain-text version of the status code.
The text version of the status code is optional—you neither need to
generate nor interpret it. It is merely a convenience for human readers
of HTTP interactions.

Responses may contain many headers, as you can see from this example.
Fortunately, you can usually ignore almost all of them. Nevertheless, let’s
take a look at the headers in the response:

 » 6HUYHU

Indicates the web server software that Pachube uses.

 » 'DWH

Indicates the time when Pachube has sent the response.

 » &RQWHQW�7\SH� WH[W�SODLQ� FKDUVHW XWI��

Indicates the format of the Pachube response. In this case, it is plain text
encoded in UTF8 (the most common encoding of Unicode characters).

������*HWWLQJ�6WDUWHG�ZLWK�WKH�,QWHUQHW�RI�7KLQJV

NOTE:! Actually, with many web services, the response to a successful
PUT request has an empty message body. The server is allowed to return
a response body, though.

 » &RQQHFWLRQ��NHHS�DOLYH

Is a relic from HTTP 1.0 (an early version of the HTTP specification).
Originally, a new TCP/IP connection was opened for every request and
then closed after the request. Because opening a connection incurs a
considerable overhead, it is better to keep a connection open if requests
are sent to the same server every couple of seconds. The NHHS�DOLYH
value was added to indicate this desire. It is not relevant anymore be-
cause most servers and clients today support HTTP 1.1, where
connections are kept alive by default. However, if for any reason a client
or a server wants to close a connection after a message exchange, it can
signal this to the other party by including the &RQQHFWLRQ� FORVH header.

NOTE:! A connection may also be closed even while request or response
messages are being exchanged—e.g., if someone tripped over your
Ethernet cable and it was yanked out. This means that closed
connections must be reopened if necessary, lost messages may have
to be re-sent, and clients and servers must be programmed in a way
that they do not misbehave—even if a connection is closed.

 » 6HW�&RRNLH

Indicates a cookie (some text that the server sends a client to store, and
which the client will send to the server in future requests) with a session
identifier. You can ignore cookies because they are not needed for our
examples.

 » &DFKH�&RQWURO� PD[�DJH �

Is intended for managing caches between client and server. It indicates
that this response must not be cached.

��+HOOR�3DFKXEH����������

 » &RQWHQW�/HQJWK� �

Indicates that the response message body consists of one byte.

 » $JH� �

Is an estimate (in seconds) of the time it has taken to produce and
transmit the response. It is a header produced by some intermediary
cache between server and client. You can ignore it.

 » 9DU\� $FFHSW�(QFRGLQJ

Tells the client that it may send an $FFHSW�(QFRGLQJ header along
with GET requests, in order to ask for different representations of the
resource. As we have seen in Chapter 5, Pachube supports several
formats for samples: FVY, MVRQ, SQJ, etc. However, you won’t need the
$FFHSW�(QFRGLQJ header in the examples of this book. Instead, you can
pass the desired format as part of the URI, e.g., KWWS���DSL�SDFKXEH�
FRP�Y��IHHGV�����FVY.

The message body, after the last &5 /) (empty line), consists of exactly
one blank character. It seems a bit strange that it is not completely empty
in the case of Pachube, but you can usually ignore the message body of a
PUT response anyway.

HTTP requests and responses are not complicated. Any device capable of
supporting TCP/IP is able to send data to Pachube or to similar services.

http://api.pachube.com/v2/feeds/256.csv
http://api.pachube.com/v2/feeds/256.csv

,QGH[�����������

Index

Symbols
@ (at sign), preceding verbatim strings,

118
{} (curly braces). See initializers; lambda

expressions
=> (lambda operator), 91
% (modulo operator), 54

A
absolute URI, 31
actors, with multithreading, 129–131, 136
actuators, 1

drivers for, 165–167
hardware for, 145–146
server updating state of, 105–111,

118–119, 132–135
writing to, 11–14

AddressFamily class, 153
AnalogInput class, 154
analog input ports, reading from, 22–26
AnalogSensor class, 100, 102, 166–167
API key, for Pachube

obtaining, 38
security of, 74
using, 49, 51, 65

Arduino-compatible shields, 146
assemblies (.dll files). See also specific

assemblies
list of, 153
.pe files translated from, 50

at sign (@), preceding verbatim strings,
118

B
BlinkingLed program example, 11–14
boards, 146. See also Netduino Plus board

braces ({}). See initializers; lambda
expressions

browser, as HTTP client, 30, 32, 35
Buffer class, 154, 168
buffer, for multithreading, 168

C
cable modem, 44
cables

Ethernet cable, ix, x
micro USB cable, ix, x

casting, 55, 110
C# language

delegates, 101–102
initializers, 90–91
lambda expressions, 91–93
lock statement, 126–128
methods, defining, 4
modulo operator (%), 54
test client in, 111–114
type casts, 55, 110
using directive, 13, 63
while loop, 52

client. See HTTP client
code examples. See program examples
Concurrent Programming on Windows

(Addison-Wesley), 136
Connect method, Socket class, 73, 82
contact information for this book, xi
ContentLength property, HttpWeb-

Request class, 65
ContentType property, HttpWebRequest

class, 65
control applications, 35
Cpu class, 153
Cpu.Pin type, 14
Create method, WebRequest class, 64

�������,QGH[

critical section, for locks, 126
CSharpRepresentation class, 154, 164
CSV representation

for feed data, 40
for measured variables, 142

curly braces ({}). See initializers; lambda
expressions

D
data streams, in feeds, 39–40
DateTime class, 153
deadlocks, in multithreading, 128–129
Debug class, 5, 153
debug output, 5–6, 8
delegates, 101–102
DELETE requests, 32
Deserializer delegate, 163
devices. See also hardware

as HTTP clients. See HTTP client,
device as

as HTTP servers. See HTTP server,
device as

Device Solutions, 146
DHCP (Dynamic Host Configuration

Protocol), 44, 44–45
DigitalActuator class, 108, 109, 154,

165–166
digital input ports, reading from, 17–19
DigitalSensor class, 154, 165, 165–166
Dispose methods, IDisposable interface,

63
DLL files. See assemblies (.dll files)
Dns class, 73, 153

GetHostEntry() method, 73
DNS (domain name system), 45
DNS lookup, 73
domain name, Internet, 45
domain name system (DNS), 45
drivers

for actuators and sensors, 165–167
for Netduino Plus board, 4

DSL modem, 44
Duffy, Joe (author)

Concurrent Programming on Windows
(Addison-Wesley), 136

E
EfficientPutRequest program example,

71–75
embedded programming, v

examples of. See program examples
limited resources for, viii

EMX Development System, 146
Encoding class, 153
errors. See exceptions; troubleshooting
Ethernet cable, ix, x
Ethernet router, ix
examples. See program examples
exceptions. See also troubleshooting

Dispose methods still called after, 63
handling, 82
race conditions and, 124, 126
type casting errors causing, 110

F
feeds. See also Pachube service

accessing, 40–41
data format for, 40
data streams in, 39–40
ID for, 39, 49, 51
sending samples to, 51, 52, 55–56
setting up, 38–40
status of, 51

G
general-purpose input/output (GPIO)

pin, 11
GetBytes method, 63
GetChars method, 63
GetHandler delegate, 160–161
GET requests, 32, 67–69

for measured variable resources, 98,
99–103

resources not changed by, 103–104
GetRequestStream method, HttpWeb-

Request class, 65
GetResponse method, HttpWebRequest

class, 65–66
GetResponseStream method, HttpWeb-

Response class, 66–67
GHI Electronics, 146

,QGH[�����������

GPIO (general-purpose input/output)
pin, 11

GPIO_PIN_A0 to _A5 constants, 14
GPIO_PIN_D0 to _D13 constants, 14
GPS devices, data from, 145
Gsiot.PachubeClient.dll file, 4, 49, 154
Gsiot.PachubeClient project, 49
Gsiot.Server.dll file, 4, 89, 154, 155–168

H
HandleGet method, AnalogSensor class,

100
HandleRequest method, Measured-

Variable class, 100
hardware. See also specific components

deploying projects to, 6–9
list of, ix–x, 145–148

HelloPachube program example, 43,
47–55, 48–55

HelloPachubeSockets program
example, 77–82

HelloWebHtml program example, 93–94
HelloWeb program example, 85, 87–91
HelloWorld program example, 3, 4–5
host, in URI, 31
HTML (Hypertext Markup Language), 32

embedding JavaScript in, 114
HTTP responses formatted as, 93–94
measured variables formatted as, 142

HTTP client
device as, 27, 34–35

examples using, 48–55, 77–82
when to use, 143–144

test client
in C#, 111–114
in JavaScript, 114–118

web browser as, 30, 32, 35
HTTP headers, 56–57, 57–58
HTTP (Hypertext Transfer Protocol), 30

default port used by, 31, 95
reverse HTTP, 86–87
status code 200, 51, 57

HTTP requests, 32–34
classes and delegates for, 155–160
DELETE requests, 32
GET requests, 32, 67–69

for measured variable resources, 98,
99–103

resources not changed by, 103–104
handlers for, 92–93
POST requests, 32
PUT requests, 32–33, 55–56, 61–67

for manipulated variable resources,
106–107

resources changed by, 105, 118–120
with efficient use of memory, 71–75,

77–82
HTTP responses, 33, 66–69

in HTML, 93–94
lambda expression for, 91
from Pachube, 57–60
in ReceiveResponse example, 75–76
request handlers and, 92

HTTP server
device as, 30

example of, 87–91
example of, with sensor, 97–104
examples of, with actuator, 105–111,

132
obstacles to, 83–84
relays for, 85–87
when to use, 143–144

Netduino Plus board as, 94–95
new implementation of, 143
test server, 149–152

HttpServer class, 154, 155–156
HttpWebRequest class, 64–66, 67–69,

153
HttpWebResponse class, 66, 67–69, 153
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
idempotent, 104, 118–119
IDisposable interface, 63
if statement, 16
initializers, 90–91
InputPort class, 146, 153
input ports

analog, reading from, 22–26
digital, reading from, 17–19
positive and negative logic for, 19

Internet addresses, 44–45, 73
reserved, 45
static, 83

�������,QGH[

Internet, connecting Netduino Plus
board to, 43–47

Internet domain name, 45
Internet of Things, 29, 34
Internet resources. See websites
int type, 55
IPAddress class, 153
IPEndPoint class, 153
IPHostEntry class, 153

J
JavaScript

embedding in HTML, 114
test client in, 114–118
verbatim strings, 118

JSON (JavaScript Object Notation)
for feed data, 40, 41
for measured variables, 142

L
lambda expressions, 91–93
LED

as output port, 13–14
examples using, 11–14, 107–111,

132–135
LedController program example,

105–111
LightSwitch program example, 15–19
locks, in multithreading, 126–128
lock statement, 126–128
long type, 55

M
MAC address, 46
Main() method, 4–5
Maker SHED website, ix
MakerShield, 146
ManipulatedVariable class, 108, 110–111,

154, 162–163
manipulated variables, 106–107
MeasuredVariable class, 103–104, 154,

161–162
measured variables, 98–99

adding, 138–139
new representations for, 142–143
URI of, 138

measurements (samples) from sensors,
15

Method property, HttpWebRequest
class, 65

methods. See also specific methods
assigning to properties. See delegates
defining, 4

MFDeploy tool
network, configuring, 46–55
programs, erasing from Netduino

Plus, 9
microcontrollers, 1
Microsoft.SPOT.Hardware.dll file, 153
Microsoft.SPOT.Native.dll file, 153
micro USB cable, ix, x
modulo operator (%), 54
monitoring applications, 35
mscorlib.dll file, 153
multithreading, 121–131, 136

actors with, 129–131, 136
buffer for, 168
deadlocks in, 128–129
example using, 132–135
locks in, 126–128
race conditions in, 124–128
scheduler for, 121
shared variables in, 126, 136

N
namespaces, 13, 153–154
NAT (network address translation), 45
Netduino Plus board, vi, ix

analog inputs on, 22
connecting to Internet, 43–45
deploying programs to, 6–9
erasing programs from, 9
as HTTP server, 94–95
LED on, 11
MAC address for, 46
pins on, 13–14
resistor on, 18–19
SDK and drivers for, 4
test client for, in JavaScript, 114–118

NETMF 4.1 SDK, 4
NETMF board. See Netduino Plus board
NETMF (.NET Micro Framework), v

classes for, list of, 153–154

,QGH[�����������

porting to different hardware, 147–148
properties for deployment, 7
setting up environment for, 3–4

.NET Micro Framework. See NETMF
(.NET Micro Framework)

network address translation (NAT), 45
NMEA protocol, 145

O
ONBOARD_LED constant, 13, 14
ONBOARD_SW1 constant, 14, 17
online resources. See websites
OutputPort class, 13, 146, 153
output ports, 13–14
Output window, 3, 8

P
PachubeClient class, 154
Pachube service, 27, 37–41. See

also feeds
account for, setting up, 38
Internet address for, 45
secure sharing keys in, 38

ParallelBlinker program example,
132–135

parallel processing. See multithreading
path, in URI, 31
.pe files, 50
pins

assignments for, 13–14
changing assignments for a sensor, 138

Pins class, 154
Pins.GPIO_PIN_A0 to _A5 constants, 14
Pins.GPIO_PIN_D0 to _D13 constants, 14
Pins.ONBOARD_LED constant, 14
Pins.ONBOARD_SW1 constant, 14, 17
Port class, 153
port forwarding, 84, 95–96
ports, 94–96

reserved, 94
in URI, 31

POST requests, 31, 32
potentiometer, ix, 20, 21

examples using, 20–26, 48–55,
77–82, 99–103

reading from, 22–26
symbol for, in schematics, 23
as voltage divider, 25

Print method, Debug class, 5
process control, 98
processor boards, 146. See also Netduino

Plus board
program examples

BlinkingLed, 11–14
EfficientPutRequest, 71–75
HelloPachube, 48–55
HelloPachubeSockets, 77–82
HelloWeb, 85
HelloWorld, 3, 4–5
LedController, 105–111
LightSwitch, 15–19
ParallelBlinker, 132–135
permission to use, xi
ReceiveResponse, 75–76
requirements for, ix–x
SimpleGetRequest, 67–69
SimplePutRequest, 61–63
TestServer, 149–152
VoltageMonitor, 97–104
VoltageReader, 20–26

programs
building as solutions in Visual Studio, 5
creating as projects in Visual Studio,

5–6
deploying to device, 6–9
embedded, v, viii
erasing from Netduino Plus, 9
running in debug mode, 8

projects. See programs
ProtocolType class, 153
public keyword, for methods, 4
pull-down resistors, 19
pull-up resistors, 18, 19
PutHandler delegate, 161
PUT requests, 32–33, 55–56, 61–67

for manipulated variable resources,
106–107

resources changed by, 105, 118–120
with efficient use of memory, 71–75,

77–82

�������,QGH[

Q
query, in URI, 31

R
race conditions, in multithreading,

124–128
ReceiveResponse program example,

75–76
relative URI, 31
relays, 85–87, 95
representational state transfer.

See REST
representations

classes and delegates for, 163–164
for feed data, 40, 41
for measured variables, 142

RequestHandler class, 157
RequestHandlerContext class, 154,

157–160
RequestRouting class, 156–157, 157
reserved addresses, 45
resistors, 17–19

potentiometer as type of, 23
symbol for, in schematics, 18

resources. See also manipulated
variables; measured variables

adding new type of, 141–142
classes and delegates for, 160–163

RESTful web services, 34, 119, 144
RESTful Web Services (O’Reilly), 34
REST (representational state transfer), 34
reverse HTTP, 86–87
Richardson, Leonard (author)

RESTful Web Services (O’Reilly), 34
router, ix, 44

NAT performed by, 45
port forwarding on, 84, 96

Ruby, Sam (author)
RESTful Web Services (O’Reilly), 34

S
samples (measurements) from sensors,

15
sampling period, 15, 52–55, 53–55
scheduler, for multithreading, 121
scheme, in URI, 31

Secret Labs, Netduino Plus board.
See Netduino Plus board

SecretLabs.NETMF.Hardware.dll file, 154
SecretLabs.NETMF.Hardware.Netduino.

dll file, 154
secure sharing keys, Pachube, 38
SendRequest method, 74–75
sensors, 1. See also monitoring applica-

tions
adding new type of, 139–141
checking result of actuator request,

106–107
client accessing, 48–55, 77–82
drivers for, 165–167
hardware for, 145–146
measured variables from, 98–99
measurements (samples) from, 15, 51,

52, 55–56
pin assignment for, changing, 138
sampling period from, 15, 52–55,

53–55
server accessing, 97–104
switches as. See switches

Serializer delegate, 163
server. See HTTP server
shared variables, in multithreading, 126,

136
sharing keys, Pachube, 38
shields, 145–146
SimpleGetRequest program example,

67–69
SimplePutRequest program example,

61–63
Sleep method, Thread class, 12, 122
Smart Personal Object Technology

(SPOT), 13
Socket API, 71, 77
Socket class, 73, 153
SocketException class, 153
SocketOptionLevel class, 153
SocketOptionName class, 153
SocketType class, 153
software requirements, 3–4
Solution Explorer

adding references, 49
deployment properties, setting, 6–8
programs, creating, 6

solutions. See programs

,QGH[�����������

SparkFun website, ix
SPOT (Smart Personal Object Tech-

nology), 13
static Internet address, 83
static keyword, for methods, 4
Stream class, 153
string conversion, 21
strings, verbatim, 118
switches

positive and negative logic for, 19
state of, reading, 17–19

System.dll file, 153
System.Http assembly, 63, 64
System.Http.dll file, 153
System.IO namespace, 153
System namespace, 153
System.Net namespace, 153
System.Net.Sockets namespace, 153

T
TCP/IP protocol, 81
test client

in C#, 111–114
in JavaScript, 114–118

test server, 149–152
Thread class, 12, 122, 153
threads. See multithreading
TimeSpan class, 153
Topaz i.MX25 board, 146
ToString method, 21
troubleshooting. See also exceptions

deployment problems, 9
failed connection, 82
HelloPachube program, 51
test server failing, 152

type casts, 55, 110

U
Uniform Resource Locator. See URI

(Uniform Resource Identifier)
URI (Uniform Resource Identifier), 31–32

for accessing Pachube feeds, 40–41
constructing for HTTP request, 74
of manipulated variable, 106
of measured variable, 98–99, 138

using directive, 13, 63

V
variable declarations, 12
variables, manipulated, 106–107
variables, measured, 98–99

adding, 138–139
new representations for, 142–143
URI of, 138

variables, shared, 126, 136
var keyword, 12
verbatim strings, 118
Visual Studio Express 2010, ix, 3

projects, creating, 5–6
solutions, building, 6

void keyword, for methods, 4
voltage divider, 25
VoltageMonitor program example, 97–104
VoltageReader program example, 20–26
voltage sensor. See potentiometer

W
WaitUntilNextPeriod method, 53–55
web browser, as HTTP client, 30, 32, 35
web interaction patterns, 34–35
Web of Things, 34
WebRequest class, 64, 65, 153
web server. See HTTP server
websites

for this book, xi
GHI Electronics online community, 145
Gsiot libraries, 4
Gsiot.PachubeClient project, 49
hardware components, ix–x
Netduino Plus board, vi
Netduino Plus online community, 145
Netduino Plus schematics and layout,

148
Netduino Plus SDK and drivers for, 4
NETMF, v, 145
NETMF 4.1 SDK, 4
Pachube service, 38
processor boards, 146
shields, 145, 146
Visual Studio Express 2010, 4

while loop, 52
Windows operating system, ix, 4
Write method, OutputPort class, 13

�������,QGH[

X
XMLHttpRequest class, 115
XML representation, 32

for feed data, 40
for measured variables, 142

Y
Yaler, reverse HTTP relay, 87

About the Author
Dr. Cuno Pfister studied computer science at the Swiss Federal Institute
of Technology in Zürich (ETH Zürich). His PhD thesis supervisor was
Prof. Niklaus Wirth, the designer of the Pascal, Modula-2, and Oberon
programming languages. Dr. Pfister is the Managing Director of Oberon
microsystems, Inc., which has worked on various projects related to the
Internet of Things, from mobile solutions to a large hydropower-plant
monitoring system with 10,000 sensors.

Colophon
The cover, heading, and body font is BentonSans, and the code font is
Bitstreams Vera Sans Mono.

You can find this at oreilly.com

in print or ebook format.

It’s also available at your favorite book retailer,

Spreading

Want to read more?

book
including Amazon and Barnes & Noble.
oreilly.com the knowledge of innovators

http://amazon.com
http://www.barnesandnoble.com/
http://oreilly.com
http://oreilly.com
http://oreilly.com/catalog/0636920013037

	Contents
	Preface
	I/Introduction
	1/Hello World
	Setting Up the Development
Environment
	HelloWorld
	Building the Program
in Visual Studio
	Deploying to the Device

	2/Writing to Actuators
	BlinkingLed

	3/Reading from Sensors
	LightSwitch
	VoltageReader

	II/Device as HTTP Client
	4/The Internet of Things
	HTTP
	Push Versus Pull

	5/Pachube
	6/Hello Pachube
	Setting Up the Network
Configuration
	HelloPachube
	What Netduino Said to Pachube
	What Pachube Said to Netduino

	7/Sending HTTP Requests—The Simple Way
	SimplePutRequest
	Making Web Requests

	8/Sending HTTP Requests—The Efficient Way
	EfficientPutRequest

	9/Hello Pachube (Sockets Version)
	PachubeClient

	III/Device as HTTP Server
	10/Hello Web
	Relaying Messages to
and from the Netduino
	HelloWeb
	Request Handlers
	HelloWebHtml
	What You Should
Know About Ports

	11/Handling Sensor Requests
	From Sensor Readings
to HTTP Resources
	URIs of Measured Variables
	VoltageMonitor
	What You Should Know
About HTTP GET

	12/Handling Actuator Requests
	From HTTP Resources
to Controlling Things
	URIs of Manipulated Variables
	LedController
	Test Client in C#
	Embed a JavaScript Test Client on the Netduino
	What You Should Know
About HTTP PUT

	13/Going Parallel
	Multithreading
	ParallelBlinker
	What You Should Know
About Multithreading

	14/Where Can I Go from Here?
	Recipes for Modifying a Server
	Server Versus Client?
When to Push, When to Pull?
	Taking a REST
	Communities
	Other Hardware
	The Sky Is the Limit

	A/Test Server
	B/.NET Classes Used in the Examples
	C/Gsiot.Server Library
	Index

